Three-dimensional object representation and invariant recognition using continuous distance transform neural networks

نویسندگان

  • Yen-Hao Tseng
  • Jenq-Neng Hwang
  • Florence H. Sheehan
چکیده

3D object recognition under partial object viewing is a difficult pattern recognition task. In this paper, we introduce a neural-network solution that is robust to partial viewing of objects and noise corruption. This method directly utilizes the acquired 3D data and requires no feature extraction. The object is first parametrically represented by a continuous distance transform neural network (CDTNN) trained by the surface points of the exemplar object. The CDTNN maps any 3D coordinate into a value that corresponds to the distance between the point and the nearest surface point of the object. Therefore, a mismatch between the exemplar object and an unknown object can be easily computed. When encountered with deformed objects, this mismatch information can be backpropagated through the CDTNN to iteratively determine the deformation in terms of affine transform. Application to 3D heart contour delineation and invariant recognition of 3D rigid-body objects is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

Mental Image Transformation and Matching using Surface Reconstruction Neural Networks

Invariant 2-D/3-D object recognition and motion estimation under detection/occlusion noise and/or partial object viewing are di cult pattern recognition tasks. On the other hand, the biological neural networks of human are extremely adept in these tasks. It has been suggested by the studies of experimental psychology that the task of matching rotated and scaled shapes by human is done by mental...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

A Neural Network for Position Invariant Pattern Recognition Combining Spiking Neurons with the Fourier-Transform

We present an approach for position invariant recognition of individual objects in composite scenes, combining neural networks and algorithmic methods. A dynamic network of spiking neurons is used to generate object definition and figure/ground separation via temporal signal correlations. A shift invariant representation of the network spike activity distribution is subsequently realized via th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 1997